The data representation in a machine-learning model strongly influences its performance. This becomes even more important for quantum machine learning models implemented on noisy intermediate scale quantum (NISQ) devices. Encoding high dimensional data into a quantum circuit for a NISQ device without any loss of information is not trivial and brings a lot of challenges. While simple encoding schemes (like single qubit rotational gates to encode high dimensional data) often lead to information loss within the circuit, complex encoding schemes with entanglement and data re-uploading lead to an increase in the encoding gate count. This is not well-suited for NISQ devices. This work proposes 'incremental data-uploading', a novel encoding pattern for high dimensional data that tackles these challenges. We spread the encoding gates for the feature vector of a given data point throughout the quantum circuit with parameterized gates in between them. This encoding pattern results in a better representation of data in the quantum circuit with a minimal pre-processing requirement. We show the efficiency of our encoding pattern on a classification task using the MNIST and Fashion-MNIST datasets, and compare different encoding methods via classification accuracy and the effective dimension of the model.
翻译:机器学习模型中的数据表示方式会对其性能产生强烈的影响。 这对于在超声中等规模量子(NISQ)设备上实施的量子机器学习模型来说变得更加重要。 将高维数据编码成一个没有丢失任何信息的新ISQ装置的量子电路并不是微不足道的, 并且带来很多挑战。 虽然简单的编码办法( 类似单 ⁇ 旋转门以编码高维数据) 常常导致电路内部的信息丢失, 带有缠绕和数据重新加载的复杂编码办法导致编码门数的增加。 这不适合 NISQ 设备。 这项工作提议“ 高级数据加载”, 这是应对这些挑战的高维数据的新编码模式 。 我们在整个量子电路中将特定数据矢量矢量的编码门和它们之间的参数化门分散。 这种编码方式导致量子电路中的数据更好地表述, 并有最低的预处理要求。 我们用MNIST和Fashian- MINST 数据集来显示我们分类任务编码格式的效率。