We revisit the classical problem of determining the largest copy of a simple polygon $P$ that can be placed into a simple polygon $Q$. Despite significant effort, known algorithms require high polynomial running times. (Barequet and Har-Peled, 2001) give a lower bound of $n^{2-o(1)}$ under the 3SUM conjecture when $P$ and $Q$ are (convex) polygons with $\Theta(n)$ vertices each. This leaves open whether we can establish (1) hardness beyond quadratic time and (2) any superlinear bound for constant-sized $P$ or $Q$. In this paper, we affirmatively answer these questions under the $k$SUM conjecture, proving natural hardness results that increase with each degree of freedom (scaling, $x$-translation, $y$-translation, rotation): (1) Finding the largest copy of $P$ that can be $x$-translated into $Q$ requires time $n^{2-o(1)}$ under the 3SUM conjecture. (2) Finding the largest copy of $P$ that can be arbitrarily translated into $Q$ requires time $n^{2-o(1)}$ under the 4SUM conjecture. (3) The above lower bounds are almost tight when one of the polygons is of constant size: we obtain an $\tilde O((pq)^{2.5})$-time algorithm for orthogonal polygons $P,Q$ with $p$ and $q$ vertices, respectively. (4) Finding the largest copy of $P$ that can be arbitrarily rotated and translated into $Q$ requires time $n^{3-o(1)}$ under the 5SUM conjecture. We are not aware of any other such natural $($degree of freedom $+ 1)$-SUM hardness for a geometric optimization problem.
翻译:我们重新审视了确定一个简单多边方元美元的最大副本的典型问题。 尽管做了大量努力, 已知的算法需要高多元运行时间。 (Barequet 和 Har-Peled, 2001) 在3SUM 预测下, 当美元和美元是( convex) 的多边形时, 当美元和美元是美元( convex) 时, 我们重新审视确定一个简单多边方元的最大副本( n) 的奥特币。 是否可以确定:(1) 硬度超过四方元, 并且(2) 任何对不变的美元或美元进行超线性绑定。 在本文中, 我们肯定地回答这些问题, 美元和 美元之间的问题, 证明自然硬性结果随着自由度( 计算, 美元- 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 或 硬性, 美元, 美元, 在3SUM 的硬性货币, 美元, 美元, 美元, 美元, 最硬性, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。