We study the online scheduling problem where the machines need to be calibrated before processing any jobs. To calibrate a machine, it will take $\lambda$ time steps as the activation time, and then the machine will remain calibrated status for $T$ time steps. The job can only be processed by the machine that is in calibrated status. Given a set of jobs arriving online, each of the jobs is characterized by a release time, a processing time, and a deadline. We assume that there is an infinite number of machines for usage. The objective is to minimize the total number of calibrations while feasibly scheduling all jobs. For the case that all jobs have unit processing times, we propose an $\mathcal{O}(\lambda)$-competitive algorithm, which is asymptotically optimal. When $\lambda=0$, the problem is degraded to rent minimization, where our algorithm achieves a competitive ratio of $3e+7(\approx 15.16)$ which improves upon the previous results for such problems.
翻译:我们研究在任何工作处理前机器需要校准的在线调度问题。 要校准机器, 需要用$\lambda$的时间步骤作为激活时间, 然后机器将保持为$T$的时间步骤的校准状态。 工作只能由在校准状态下的机器处理。 鉴于一组在线工作, 每个工作的特点都是发布时间、 处理时间和最后期限。 我们假设有无限数量的机器需要使用。 目标是在可以想象的所有工作排成时尽量减少校准的总数。 对于所有工作都有单位处理时间的情况, 我们建议使用$\mathcal{ O}(\\lambda)$- 竞争性算法, 这个算法是非现成最佳的。 当 $\lambda=0美元时, 问题会退化到租金最小化, 我们的算法可以达到3+7(\ approx 15. 16) 的竞争性比率, 从而在这些问题上比以前的结果更好。