Batch Normalization is a key component in almost all state-of-the-art image classifiers, but it also introduces practical challenges: it breaks the independence between training examples within a batch, can incur compute and memory overhead, and often results in unexpected bugs. Building on recent theoretical analyses of deep ResNets at initialization, we propose a simple set of analysis tools to characterize signal propagation on the forward pass, and leverage these tools to design highly performant ResNets without activation normalization layers. Crucial to our success is an adapted version of the recently proposed Weight Standardization. Our analysis tools show how this technique preserves the signal in networks with ReLU or Swish activation functions by ensuring that the per-channel activation means do not grow with depth. Across a range of FLOP budgets, our networks attain performance competitive with the state-of-the-art EfficientNets on ImageNet.
翻译:批量正常化是几乎所有最先进的图像分类中的一个关键组成部分,但它也带来了实际挑战:它打破了一个批量内培训实例的独立性,可能引起计算和记忆管理费用,并常常导致出乎意料的错误。根据对初始化时深ResNets的理论分析,我们提出了一套简单的分析工具来描述远端通道上的信号传播特征,并利用这些工具来设计高性能ResNet而不激活正常化层。我们成功的关键在于对最近提议的 Weight 标准化进行了调整。我们的分析工具表明,这种技术如何通过确保单声道启动手段不会在深度上增长,从而将信号保存在ReLU或Swish激活功能的网络中。在FLOP的一系列预算中,我们的网络在与图像网络上最先进的节能网络竞争性能。