In this paper, we present an empirical study of using pre-trained BERT models for the relation extraction task at the VLSP 2020 Evaluation Campaign. We applied two state-of-the-art BERT-based models: R-BERT and BERT model with entity starts. For each model, we compared two pre-trained BERT models: FPTAI/vibert and NlpHUST/vibert4news. We found that NlpHUST/vibert4news model significantly outperforms FPTAI/vibert for the Vietnamese relation extraction task. Finally, we proposed an ensemble model that combines R-BERT and BERT with entity starts. Our proposed ensemble model slightly improved against two single models on the development data and the test data provided by the task organizers.
翻译:在本文中,我们介绍了在VLSP 2020年评估运动中使用预先培训的BERT模型进行关系提取任务的经验研究,我们应用了两种最先进的BERT模型:R-BERT模型和BERT模型,由实体开始;我们分别对两个经过培训的BERT模型进行了比较:FPTAI/vibert和NlpHUST/VIbert4news;我们发现NlpHUST/VIbert4news模型明显优于FPTAI/Vibert,由越南关系提取任务。最后,我们提出了一个将R-BERT和BERT与实体开始相结合的组合模型。我们提议的组合模型比两个关于开发数据和任务组织者提供的测试数据的单一模型略有改进。