In this paper, we present an empirical study of using pre-trained BERT models for the relation extraction task at the VLSP 2020 Evaluation Campaign. We applied two state-of-the-art BERT-based models: R-BERT and BERT model with entity starts. For each model, we compared two pre-trained BERT models: FPTAI/vibert and NlpHUST/vibert4news. We found that NlpHUST/vibert4news model significantly outperforms FPTAI/vibert for the Vietnamese relation extraction task. Finally, we proposed an ensemble model that combines R-BERT and BERT with entity starts. Our proposed ensemble model slightly improved against two single models on the development data and the test data provided by the task organizers.


翻译:在本文中,我们介绍了在VLSP 2020年评估运动中使用预先培训的BERT模型进行关系提取任务的经验研究,我们应用了两种最先进的BERT模型:R-BERT模型和BERT模型,由实体开始;我们分别对两个经过培训的BERT模型进行了比较:FPTAI/vibert和NlpHUST/VIbert4news;我们发现NlpHUST/VIbert4news模型明显优于FPTAI/Vibert,由越南关系提取任务。最后,我们提出了一个将R-BERT和BERT与实体开始相结合的组合模型。我们提议的组合模型比两个关于开发数据和任务组织者提供的测试数据的单一模型略有改进。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
文本+视觉,多篇 Visual/Video BERT 论文介绍
AI科技评论
22+阅读 · 2019年8月30日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
人工智能前沿讲习班
4+阅读 · 2018年11月15日
自然语言处理中的语言模型预训练方法
PaperWeekly
14+阅读 · 2018年10月21日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
3+阅读 · 2019年11月28日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
8+阅读 · 2019年3月21日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
文本+视觉,多篇 Visual/Video BERT 论文介绍
AI科技评论
22+阅读 · 2019年8月30日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
人工智能前沿讲习班
4+阅读 · 2018年11月15日
自然语言处理中的语言模型预训练方法
PaperWeekly
14+阅读 · 2018年10月21日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员