In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.


翻译:在这项工作中,我们为某些代数错误校正代码提供了一个抽象框架,目的是捕捉列表与能力分解的代码。在多式理想框架中,一个代码由多式环中的一些理想来指定,信息是多式的,其编码是残余的代谢。我们用线性操作器来查看这一类代码的替代方式。我们展示了这一替代视图,使得其算式的离子式列表变异性便于分析。我们的框架导致一种新的代码类别,我们称之为折叠 Reed-Solomon 代码(这本身就是我们所探索的大类中一个特殊的例子) 。在多式圆形环中,信息是多式的多式代码,它们的编码是残余的代谢。同时,我们用一种不太精细的 Additive- Reed- Solomon 代码,以及一个先前不为人所知/研究的庞大的代码组。 更显著的是,我们的框架里德- Solo- reach- reconomon 也为我们目前所了解的远式解算法的解算法, 显示我们以前的代号的当前解算法的解算能力。

0
下载
关闭预览

相关内容

【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员