Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high energy particle physics. In particular, particle tracking data is naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges; given a set of hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta thresholds, we demonstrate the IN's excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.


翻译:最近的工作表明,石墨神经网络(GNNs)等几何深学习方法非常适合解决高能粒子物理学中各种重建问题。特别是,粒子跟踪数据自然以图表形式呈现,方法是将硅跟踪器点击确定为节点,将粒子轨迹确定为边缘;给一组假设边缘,将GNNS的边缘分类确定为与实际粒子轨迹相对应的。在这项工作中,我们调整了物理学动机互动网络(IN),以适应在与高光度大型 Hadron对撞机预期类似的堆积条件下跟踪粒子的问题。假设在各种粒子瞬间临界点进行理想的过滤,我们通过基于GNN的跟踪的每个阶段的一系列测量,显示IN的边缘分类准确性和跟踪效率:图形构造、边缘分类和轨道建设。拟议的IN结构大大小于以前研究过的GNNN跟踪结构;这尤其有希望,因为缩小规模对于使GNNE在限制的计算环境中进行跟踪至关重要。此外,假定在各种粒子临界临界状态下进行优化的筛选筛选筛选筛选筛选筛选,通过每组的模型,可以显示为通过GNNNP的快速定位。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2021年10月25日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Learning Discriminative Model Prediction for Tracking
Arxiv
5+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年3月22日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员