Swimming microrobots are increasingly developed with complex materials and dynamic shapes and are expected to operate in complex environments in which the system dynamics are difficult to model and positional control of the microrobot is not straightforward to achieve. Deep reinforcement learning is a promising method of autonomously developing robust controllers for creating smart microrobots, which can adapt their behavior to operate in uncharacterized environments without the need to model the system dynamics. Here, we report the development of a smart helical magnetic hydrogel microrobot that used the soft actor critic reinforcement learning algorithm to autonomously derive a control policy which allowed the microrobot to swim through an uncharacterized biomimetic fluidic environment under control of a time varying magnetic field generated from a three-axis array of electromagnets. The reinforcement learning agent learned successful control policies with fewer than 100,000 training steps, demonstrating sample efficiency for fast learning. We also demonstrate that we can fine tune the control policies learned by the reinforcement learning agent by fitting mathematical functions to the learned policy's action distribution via regression. Deep reinforcement learning applied to microrobot control is likely to significantly expand the capabilities of the next generation of microrobots.


翻译:游泳微型机器人正在越来越多地以复杂的材料和动态形状发展成游泳微型机器人,并预计将在复杂的环境中运作,因为在这种环境中,系统动态难以建模,微机器人的定位控制并非直截了当。深层强化学习是自主开发强大的控制器以创造智能微型机器人的一种有希望的方法,它可以调整其行为,使其在没有特征的环境中运作,而无需模拟系统动态。在这里,我们报告开发了一个智能的直升机磁磁性水相微机器人,它利用软行为者评论家强化学习算法自主地得出一种控制政策,使微机器人能够在三轴电磁网生成的不同时间磁场的控制下,通过一个未精密的生物模拟流化环境游泳。强化学习器学习成功的控制政策,其培训步骤少于10万个,展示快速学习的样本效率。我们还表明,我们可以通过将数学功能与通过回归而学习的政策行动分布相匹配,从而精密地调整通过强化学习剂学到的控制政策政策。微机器人新一代的深度强化学习可能大大扩展微机器人的生成能力。

0
下载
关闭预览

相关内容

【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员