The deep image prior has demonstrated the remarkable ability that untrained networks can address inverse imaging problems, such as denoising, inpainting and super-resolution, by optimizing on just a single degraded image. Despite its promise, it suffers from two limitations. First, it remains unclear how one can control the prior beyond the choice of the network architecture. Second, it requires an oracle to determine when to stop the optimization as the performance degrades after reaching a peak. In this paper, we study the deep image prior from a spectral bias perspective to address these problems. By introducing a frequency-band correspondence measure, we observe that deep image priors for inverse imaging exhibit a spectral bias during optimization, where low-frequency image signals are learned faster and better than high-frequency noise signals. This pinpoints why degraded images can be denoised or inpainted when the optimization is stopped at the right time. Based on our observations, we propose to control the spectral bias in the deep image prior to prevent performance degradation and to speed up optimization convergence. We do so in the two core layer types of inverse imaging networks: the convolution layer and the upsampling layer. We present a Lipschitz-controlled approach for the convolution and a Gaussian-controlled approach for the upsampling layer. We further introduce a stopping criterion to avoid superfluous computation. The experiments on denoising, inpainting and super-resolution show that our method no longer suffers from performance degradation during optimization, relieving us from the need for an oracle criterion to stop early. We further outline a stopping criterion to avoid superfluous computation. Finally, we show that our approach obtains favorable restoration results compared to current approaches, across all tasks.


翻译:远古图像显示, 未经训练的网络能够通过优化单一的退化图像, 解决反向成像问题, 如分红、 涂色和超分辨率, 解决反向成像问题的惊人能力。 尽管它有希望, 它有两种限制。 首先, 它仍然不清楚如何控制先前的成像, 超越网络架构的选择。 第二, 它需要一个神器来决定何时在性能达到峰值后下降时停止优化。 在本文中, 我们从光谱偏差的角度研究之前的深色图像, 以解决这些问题。 通过引入频谱通信测量, 我们观察到反向成像的深层前端图像在优化期间会显示一种光谱偏差的偏差, 低频图像信号比高频噪音信号学习得更快和更好。 这明确了为什么在优化在正确的时间停止时, 退化图像可以被淡化或暗淡化。 根据我们的观察, 我们提议在深度图像之前控制光谱偏差偏差的偏差, 以防止性降解, 并加快优化的趋同。 我们在两个反向的图层网络中会避免偏差的偏差偏差, : 在变变变变变图中, 显示我们目前渐渐渐的变的变的平标准, 。

0
下载
关闭预览

相关内容

Python图像处理,366页pdf,Image Operators Image Processing in Python
【ICML2020-Tutorial】无标签表示学习,222页ppt,DeepMind
专知会员服务
89+阅读 · 2020年7月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员