The deployment of Autonomous Vehicles (AVs) poses considerable challenges and unique opportunities for the design and management of future urban road infrastructure. In light of this disruptive transformation, the Right-Of-Way (ROW) composition of road space has the potential to be renewed. Design approaches and intelligent control models have been proposed to address this problem, but we lack an operational framework that can dynamically generate ROW plans for AVs and pedestrians in response to real-time demand. Based on microscopic traffic simulation, this study explores Reinforcement Learning (RL) methods for evolving ROW compositions. We implement a centralised paradigm and a distributive learning paradigm to separately perform the dynamic control on several road network configurations. Experimental results indicate that the algorithms have the potential to improve traffic flow efficiency and allocate more space for pedestrians. Furthermore, the distributive learning algorithm outperforms its centralised counterpart regarding computational cost (49.55\%), benchmark rewards (25.35\%), best cumulative rewards (24.58\%), optimal actions (13.49\%) and rate of convergence. This novel road management technique could potentially contribute to the flow-adaptive and active mobility-friendly streets in the AVs era.
翻译:部署自主车辆(AVs)在设计和管理未来城市道路基础设施方面提出了重大挑战和独特机遇。在这个具有颠覆性变革的背景下,道路空间的行驶权组成具有更新的潜力。虽然已经提出了设计方法和智能控制模型来解决这个问题,但我们缺乏一个动态生成AV和行人的行驶权计划的操作框架以响应实时需求。基于微观交通仿真,本研究探讨强化学习(RL)方法来自适应演化行驶权组成。我们实现了集中式范例和分布式学习范例,分别在多个道路网络配置上执行动态控制。实验结果表明,算法有潜力提高交通流效率并分配更多空间给行人。此外,分布式学习算法在计算成本(49.55%)、基准奖励(25.35%)、最佳累积奖励(24.58%)、最佳操作(13.49%)和收敛率方面优于其集中式对应物。这种新型道路管理技术可能有助于在AVs时代实现流动适应和活动性友好的街道。