This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
翻译:本文介绍了对多层面项目响应理论(MIRT)的机算学习方法(MIRT),这是一种潜在的要素模型,可用于从观测到的评估数据中模拟和预测学生的成绩。在协作过滤的启发下,我们定义了包括许多MIRT模型在内的一般模型类别。我们讨论了使用惩罚性联合最大可能性(JML)来估计单个模型和交叉验证来选择最佳表现模型。这个模型评价过程可以使用批量技术优化,甚至可以高效地分析稀有的大型数据。我们用模拟和实际数据来说明我们的方法,包括大规模开放式在线课程(MOOC)的一个实例。适合这一庞大和稀少数据集的高维模型并不适合于传统的要素解释方法。通过类比建议系统应用,我们提出一个要素模型的替代“验证”,使用课程公开考试期间所咨询的项目的普及程度的辅助信息。