Graph database users today face a choice between two technology stacks: the Resource Description Framework (RDF), on one side, is a data model with built-in semantics that was originally developed by the W3C to exchange interconnected data on the Web; on the other side, Labeled Property Graphs (LPGs) are geared towards efficient graph processing and have strong roots in developer and engineering communities. The two models look at graphs from different abstraction layers (triples in RDF vs. edges connecting vertices with inlined properties in LPGs), expose - at least at the surface - distinct features, come with different query languages, and are embedded into their own software ecosystems. In this short paper, we introduce a novel unifying graph data model called Statement Graphs, which combines the traits of both RDF and LPG and achieves interoperability at different levels: it (a) provides the ability to manage RDF and LPG data as a single, interconnected graph, (b) supports querying over the integrated graph using any RDF or LPG query language, while (c) clearing the way for graph stack independent data exchange mechanisms and formats. We formalize our new model as directed acyclic graphs and sketch a system of bidirectional mappings between RDF, LPGs, and Statement Graphs. Our mappings implicitly define read query semantics for RDF and LPGs query languages over the unified data model, thus providing graph users with the flexibility to use the query language of their choice for their graph use cases. As a proof of concept for our ideas, we also present the 1G Playground; an in-memory DBMS built on the concepts of Statement Graphs, which facilitates storage of both RDF and LPG data, and allows for cross-model querying using both SPARQL and Gremlin.


翻译:暂无翻译

0
下载
关闭预览

相关内容

资源描述框架(英语:Resource Description Framework,缩写为RDF),是万维网联盟(W3C)提出的一组标记语言的技术规范,以便更为丰富地描述和表达网络资源的内容与结构。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员