We solve MIT's Linear Algebra 18.06 course and Columbia University's Computational Linear Algebra COMS3251 courses with perfect accuracy by interactive program synthesis. This surprisingly strong result is achieved by turning the course questions into programming tasks and then running the programs to produce the correct answers. We use OpenAI Codex with zero-shot learning, without providing any examples in the prompts, to synthesize code from questions. We quantify the difference between the original question text and the transformed question text that yields a correct answer. Since all COMS3251 questions are not available online the model is not overfitting. We go beyond just generating code for questions with numerical answers by interactively generating code that also results visually pleasing plots as output. Finally, we automatically generate new questions given a few sample questions which may be used as new course content. This work is a significant step forward in solving quantitative math problems and opens the door for solving many university level STEM courses by machine.
翻译:我们通过交互式程序合成,以完全准确的方式解决麻省理工学院的线性代数18.06课程和哥伦比亚大学的比较线性代数COMS3251课程。通过将课程问题转换成程序任务,然后运行程序以得出正确的答案,取得了令人惊讶的有力结果。我们使用OpenAI Codex,在不提供任何实例的情况下,以零速学习来综合问题代码。我们量化了原始问题文本与可得出正确答案的变换问题文本之间的差别。由于所有COMS3251问题无法在网上找到,该模型是没有过分的。我们超越了仅仅通过交互式生成代码生成数字答案的问题代码,这些代码也能产生视觉上令人愉快的图案。最后,我们自动生成了几个样本问题,可以用作新的课程内容。这项工作在解决定量数学问题和打开通过机器解决许多大学水平STEM课程的大门方面迈出了重要的一步。