Object detection is an essential component of many vision systems. For example, pedestrian detection is used in advanced driver assistance systems (ADAS) and advanced video surveillance systems (AVSS). Currently, most detectors use deep convolutional neural networks (e.g., the YOLO -- You Only Look Once -- family), which, however, due to their high computational complexity, are not able to process a very high-resolution video stream in real-time, especially within a limited energy budget. In this paper we present a hardware implementation of the well-known pedestrian detector with HOG (Histogram of Oriented Gradients) feature extraction and SVM (Support Vector Machine) classification. Our system running on AMD Xilinx Zynq UltraScale+ MPSoC (Multiprocessor System on Chip) device allows real-time processing of 4K resolution (UHD -- Ultra High Definition, 3840 x 2160 pixels) video for 60 frames per second. The system is capable of detecting a pedestrian in a single scale. The results obtained confirm the high suitability of reprogrammable devices in the real-time implementation of embedded vision systems.
翻译:目标探测是许多视觉系统的一个基本组成部分。例如,行人探测用于先进的驱动器辅助系统和高级视频监视系统(ADAS),目前,大多数探测器使用深电动神经网络(例如YOLO -- -- 你只看一次 -- -- 家庭),然而,由于这些网络的计算复杂性很高,无法实时处理甚高分辨率视频流,特别是在有限的能源预算范围内。在本文中,我们用HOG(定向梯度高度图)特征提取和SVM(支持矢量机)分类,展示了著名的行人探测器硬件的安装情况。我们用AMD Xilinx Zynq Ulttragraph + MPSoC(芯片多处理器系统)装置运行的系统使4K分辨率(UHD -- -- Ulttra高定义,3840 x 2160 像素)视频每秒可以实时处理60个尺寸的视频。该系统能够以单一尺度探测行人。获得的结果证实,实时实施嵌入式系统中可重新配置装置的高度适合性。