The lack of standard input interfaces in the Internet of Things (IoT) ecosystems presents a challenge in securing such infrastructures. To tackle this challenge, we introduce a novel behavioral biometric system based on naturally occurring interactions with objects in smart environments. This biometric leverages existing sensors to authenticate users without requiring any hardware modifications of existing smart home devices. The system is designed to reduce the need for phone-based authentication mechanisms, on which smart home systems currently rely. It requires the user to approve transactions on their phone only when the user cannot be authenticated with high confidence through their interactions with the smart environment. We conduct a real-world experiment that involves 13 participants in a company environment, using this experiment to also study mimicry attacks on our proposed system. We show that this system can provide seamless and unobtrusive authentication while still staying highly resistant to zero-effort, video, and in-person observation-based mimicry attacks. Even when at most 1% of the strongest type of mimicry attacks are successful, our system does not require the user to take out their phone to approve legitimate transactions in more than 80% of cases for a single interaction. This increases to 92% of transactions when interactions with more objects are considered.
翻译:互联网物质( IoT) 生态系统缺乏标准输入界面是保障这类基础设施的一个挑战。 为了应对这一挑战, 我们引入了一个基于自然发生的与智能环境中的物体相互作用的新颖行为生物鉴别系统。 这个生物鉴别系统利用现有传感器认证用户,而无需对现有智能家用设备进行任何硬件改造。 这个系统旨在减少对手机验证机制的需求, 智能家用系统目前依赖这种机制。 它要求用户仅在用户无法通过与智能环境的互动以高度信任的方式认证其手机交易时, 才能批准该交易。 我们进行真实世界的实验, 涉及13个公司环境中的参与者, 并使用这个实验来研究对我们拟议系统进行模拟攻击。 我们显示, 这个系统可以提供无缝和不受干扰的认证, 同时仍然对零力、 视频 和 个人观察式的模拟攻击保持高度的抗力。 即使最强类型的模拟攻击中最多只有1%的成功, 我们的系统也不要求用户拿出他们的手机来批准超过80%的案例进行合法交易, 从而进行单一互动。 这增加了交易的92% 。