We present a simple yet effective self-supervised framework for audio-visual representation learning, to localize the sound source in videos. To understand what enables to learn useful representations, we systematically investigate the effects of data augmentations, and reveal that (1) composition of data augmentations plays a critical role, {\em i.e.}~explicitly encouraging the audio-visual representations to be invariant to various transformations~({\em transformation invariance}); (2) enforcing geometric consistency substantially improves the quality of learned representations, {\em i.e.}~the detected sound source should follow the same transformation applied on input video frames~({\em transformation equivariance}). Extensive experiments demonstrate that our model significantly outperforms previous methods on two sound localization benchmarks, namely, Flickr-SoundNet and VGG-Sound. Additionally, we also evaluate audio retrieval and cross-modal retrieval tasks. In both cases, our self-supervised models demonstrate superior retrieval performances, even competitive with the supervised approach in audio retrieval. This reveals the proposed framework learns strong multi-modal representations that are beneficial to sound localisation and generalization to further applications. \textit{All codes will be available}.


翻译:我们为视听代表制学习提供了一个简单而有效的自我监督框架,使声音源在视频中本地化。为了了解能够学习有用的表达方式,我们系统地调查数据增强的效果,并揭示:(1)数据增强的构成发挥着关键的作用,即明确鼓励视听表达方式对各种变换不起作用;(2)实施几何一致性,大大提高了学习的表达方式的质量,也就是说,被检测到的音频源应当遵循输入视频框架~(用户变换等)的相同转换方式。广泛的实验表明,我们的模式大大优于先前关于两个声音化基准的方法,即Flickr-SoundNet和VGG-Sound。此外,我们还评估音频检索和跨模式检索任务。在这两种情况下,我们自我控制的模型都显示了优异的检索功能,甚至与音频检索的监督下方法具有竞争力。这显示了拟议的框架学会了强大的多模式表达方式,有利于健全的本地化和通用的应用程序。{Alltretrol}

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员