Optical wireless satellite networks (OWSNs) can provide lower latency data communications compared to optical fiber terrestrial networks (OFTNs). The crossover function enables to calculate the crossover distance for an OWSN and an OFTN. If the distance between two points on Earth is greater than the crossover distance, then switching or crossing over from the OFTN to the OWSN results in lower latency for data communications between these points. In this work, we extend the previously proposed crossover function for a scenario such that intermediate satellites (or hops) are incorporated between ingress and egress satellites in the OWSN for a more realistic calculation of the crossover distance in this scenario. We consider different OWSNs with different satellite altitudes and different OFTNs with different optical fiber refractive indexes, and we study the effect of the number of hops on crossover distance and length of a laser inter-satellite link (LISL). It is observed from numerical results that crossover distance increases with number of hops, and this increase is higher at higher satellite altitudes in OWSNs and lower refractive indexes in OFTNs. Furthermore, an inverse relationship between crossover distance and length of a LISL is observed. With increase in number of hops, the length of a LISL decreases as opposed to the crossover distance.
翻译:与光纤地面网络相比,光学无线卫星网络(OWSNS)可以提供较低的潜伏数据通信。交叉功能能够计算OWSN和OFTN的跨度距离。如果地球两个点之间的距离大于交叉距离,那么从OFTN到OWSN的转接或跨过会降低这些点之间数据通信的潜伏时间。在这项工作中,我们扩大了先前提议的跨度功能,这样一种假设情景是,中卫星(或跳)在OWSN的反向卫星卫星卫星(或跳)之间被并入OWSNSN,以便更现实地计算这一情景中的跨度距离。我们考虑不同的卫星高度和不同光纤反射指数的顶点之间的距离。我们研究从OFTN到OWSN之间的跳数对交叉距离和距离的影响。从数字结果可以看出,在OWSNSN的较高卫星高度和低反向反向的反向指数中,相对于LSL的跨距离的跨度和跨距离是观测到LIS的跨度。