In this paper, we address the resource provisioning problem for service function chaining (SFC) in terms of the placement and chaining of virtual network functions (VNFs) within a multi-access edge computing (MEC) infrastructure to reduce service delay. We consider the VNFs as the main entities of the system and propose a mean-field game (MFG) framework to model their behavior for their placement and chaining. Then, to achieve the optimal resource provisioning policy without considering the system control parameters, we reduce the proposed MFG to a Markov decision process (MDP). In this way, we leverage reinforcement learning with an actor-critic approach for MEC nodes to learn complex placement and chaining policies. Simulation results show that our proposed approach outperforms benchmark state-of-the-art approaches.
翻译:在本文中,我们从多接入边缘计算基础设施中虚拟网络功能的定位和链化的角度,解决服务功能链化的资源提供问题,以减少服务延迟,我们认为虚拟网络功能(VNF)是系统的主要实体,并提议一个平均场游戏框架,以模拟其定位和链化行为。然后,为了在不考虑系统控制参数的情况下实现最佳资源提供政策,我们将拟议的MFG降低为马尔科夫决策程序(MDP ) 。 通过这种方式,我们利用强化学习的行为体-批评方法,让MEC节点学习复杂的定位和链化政策。模拟结果表明,我们拟议的方法超越了最先进的基准方法。