For the linear bandit problem, we extend the analysis of algorithm CombEXP from [R. Combes, M. S. Talebi Mazraeh Shahi, A. Proutiere, and M. Lelarge. Combinatorial bandits revisited. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2116--2124. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/5831-combinatorial-bandits-revisited.pdf] to the high-probability case against adaptive adversaries, allowing actions to come from an arbitrary polytope. We prove a high-probability regret of \(O(T^{2/3})\) for time horizon \(T\). While this bound is weaker than the optimal \(O(\sqrt{T})\) bound achieved by GeometricHedge in [P. L. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and A. Tewari. High-probability regret bounds for bandit online linear optimization. In 21th Annual Conference on Learning Theory (COLT 2008), July 2008. http://eprints.qut.edu.au/45706/1/30-Bartlett.pdf], CombEXP is computationally efficient, requiring only an efficient linear optimization oracle over the convex hull of the actions.


翻译:对于线性土匪问题,我们将对CombEXP算法的分析从[R.Combes、M.S.Talebi Mazraeh Shahi、A.Proutiere和M.Legraf. Legrapher.]扩大到针对适应性对手的高概率案例,允许从任意的多功能中采取行动。在C. Cortes、N.D. Lawrence、D. D. Lee、M. Sugiyama和R. Garnett编辑、神经信息处理系统进步28页,第2116-2124页。Curran Associates, Incional http://papers.nips.cc/paper 5831-combinator-britits-revisit.pdf],再扩展至允许行动来自任意的多功能。我们证明,对于时间前景来说,(O(T&2/3)M.

0
下载
关闭预览

相关内容

非凸优化与统计学,89页ppt,普林斯顿Yuxin Chen博士
专知会员服务
103+阅读 · 2020年6月28日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
专知会员服务
62+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员