This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions. Our algorithm achieves $O(\sigma / \sqrt{T})$ convergence when the oracle feedback is stochastic with variance $\sigma^2$, and improves its convergence to $O( 1 / T^3)$ with deterministic oracles, where $T$ is the number of iterations. Our method also interpolates these rates without knowing the nature of the oracle apriori, which is enabled by a parameter-free adaptive step-size that is oblivious to the knowledge of smoothness modulus, variance bounds and the diameter of the constrained set. To our knowledge, this is the first universal algorithm with such global guarantees within the second-order optimization literature.
翻译:这项工作提出了一种通用和适应性第二阶方法,以最大限度地减少第二阶顺流、顺流、顺流的功能。我们的算法实现了美元(sigma /\\ sqrt{T}) 的趋同。当神器反馈具有相容性,且有差异(sigma=2美元)时,我们的算法实现了美元(o) (sigma /\\ sqrt{T}) 的趋同,并改进了它与O(1/ T ⁇ 3) 的趋同性,用确定性或断层(t$为迭代数) 的趋同性。我们的计算法还在不知道神器优先性的性质的情况下将这些比率相互调和这些比率进行调和,因为这个标准是由一个无参数的适应性梯度大小所促成的,它忽视了对光度模量、差异界限和受限数据集直径的了解。据我们所知,这是在第二阶优化文献中具有这种全球保证的第一个通用的通用算法。