In the paper, we show how scalable, low-cost trunk-like robotic arms can be constructed using only basic 3D-printing equipment and simple electronics. The design is based on uniform, stackable joint modules with three degrees of freedom each. Moreover, we present an approach for controlling these robots with recurrent spiking neural networks. At first, a spiking forward model learns motor-pose correlations from movement observations. After training, intentions can be projected back through unrolled spike trains of the forward model essentially routing the intention-driven motor gradients towards the respective joints, which unfolds goal-direction navigation. We demonstrate that spiking neural networks can thus effectively control trunk-like robotic arms with up to 75 articulated degrees of freedom with near millimeter accuracy.
翻译:在论文中,我们展示了如何使用基本的3D打印设备和简单的电子设备来建造可扩展的、低成本的中继体型机器人武器。设计基于统一的、可叠叠的组合模块,每个单元自由度各为3度。此外,我们展示了一种方法来控制这些机器人,同时使用反复的喷射神经网络。首先,一个跳跃式的前方模型从运动观测中学习了机动性相关关系。经过培训,可以通过前方模型的无滚动钉列车来回射意图,基本上将意图驱动的发动机梯子引向各自的接合点,从而展开目标方向导航。我们证明,跳动的神经网络因此可以有效地控制像中继体一样的机器人武器,其高度可达75度,且接近毫米的精确度。