Modern neuroimaging techniques, such as diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), enable us to model the human brain as a brain network or connectome. Capturing brain networks' structural information and hierarchical patterns is essential for understanding brain functions and disease states. Recently, the promising network representation learning capability of graph neural networks (GNNs) has prompted many GNN-based methods for brain network analysis to be proposed. Specifically, these methods apply feature aggregation and global pooling to convert brain network instances into meaningful low-dimensional representations used for downstream brain network analysis tasks. However, existing GNN-based methods often neglect that brain networks of different subjects may require various aggregation iterations and use GNN with a fixed number of layers to learn all brain networks. Therefore, how to fully release the potential of GNNs to promote brain network analysis is still non-trivial. To solve this problem, we propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network. Concretely, BN-GNN employs deep reinforcement learning (DRL) to train a meta-policy to automatically determine the optimal number of feature aggregations (reflected in the number of GNN layers) required for a given brain network. Extensive experiments on eight real-world brain network datasets demonstrate that our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.


翻译:现代神经成像技术,如扩散高光成像(DTI)和功能性磁共振成像(fMRI)等现代神经成像技术,使我们能够将人类大脑建模成大脑网络或连接器(fMRI),从而能够将人类大脑建模成大脑网络。掌握大脑网络的结构信息和等级模式对于理解大脑功能和疾病状态至关重要。最近,有希望的图形神经网络的网络代表学习能力(GNN)促使人们提出许多基于GNN的脑网络分析方法。具体地说,这些方法应用地貌集合和全球集合,将大脑网络的事例转换成用于下游大脑网络分析任务的有意义的低维度显示器。然而,基于GNNNN采用的现有方法往往忽视,不同主题的大脑网络可能要求各种聚合迭代,并使用具有固定数层的GNNNN网络学习所有大脑网络。因此,如何充分释放GNNNN的潜力,以促进脑网络分析。为了解决这个问题,我们提议一个新的脑网络代表框架,即BNNNNNNN,为每个大脑网络寻找最佳 GNNNNM结构结构结构结构的架构。具体地,B使用深度强化的深度强化的脑网络,以自动地显示G的G的GMMMMMMMMMMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMLMMMMMMMMMMMMMMMMMMMMLMLMLMLMLMLMLMLMLMLMLMLMDMLMLMLMLMLMDMUDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDM

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2022年4月13日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
Arxiv
64+阅读 · 2022年4月13日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
23+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员