Visual domain adaptation involves learning to classify images from a target visual domain using labels available in a different source domain. A range of prior work uses adversarial domain alignment to try and learn a domain invariant feature space, where a good source classifier can perform well on target data. This however, can lead to errors where class A features in the target domain get aligned to class B features in source. We show that in the presence of a few target labels, simple techniques like self-supervision (via rotation prediction) and consistency regularization can be effective without any adversarial alignment to learn a good target classifier. Our Pretraining and Consistency (PAC) approach, can achieve state of the art accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets. Notably, it outperforms all recent approaches by 3-5% on the large and challenging DomainNet benchmark, showing the strength of these simple techniques in fixing errors made by adversarial alignment.
翻译:视觉域适应需要使用不同源域的标签,从目标直观域中学习图像的分类。 一系列先前的工作使用对抗性域对齐来尝试和学习一个域变量空间, 良好的源分类器可以在目标数据上很好地发挥作用。 但是, 这可能导致目标域的A类特征与源的B类特征相匹配的错误。 我们显示,在几个目标标签存在的情况下, 简单技术, 如自我监督( 通过旋转预测) 和一致性规范等, 可以在没有任何对抗性对齐来学习一个良好的目标分类器的情况下有效。 我们的预设和一致性( PAC) 方法可以实现半超过多个多数据集的对称域调整方法的艺术准确性。 值得注意的是, 它比大型且具有挑战性的 DomainNet 基准中所有3- 5 % 的最近方法都相形形形色, 显示这些简单技术在确定对称对称匹配错误时的强度。