We explore the zero-shot setting for day-night domain adaptation. The traditional domain adaptation setting is to train on one domain and adapt to the target domain by exploiting unlabeled data samples from the test set. As gathering relevant test data is expensive and sometimes even impossible, we remove any reliance on test data imagery and instead exploit a visual inductive prior derived from physics-based reflection models for domain adaptation. We cast a number of color invariant edge detectors as trainable layers in a convolutional neural network and evaluate their robustness to illumination changes. We show that the color invariant layer reduces the day-night distribution shift in feature map activations throughout the network. We demonstrate improved performance for zero-shot day to night domain adaptation on both synthetic as well as natural datasets in various tasks, including classification, segmentation and place recognition.
翻译:我们探索日间领域适应的零点设定。 传统的域适应设置是通过利用测试集中未贴标签的数据样本,在一个领域进行培训,并适应目标领域。 由于收集相关的测试数据费用昂贵,有时甚至不可能,我们不再依赖测试数据图像,而是利用基于物理的反射模型的视觉感应前导,以适应领域。 我们将一些颜色变化中的边缘探测器作为动态神经网络中可训练的层,并评价其对照明变化的强度。 我们显示,变化层的颜色减少了整个网络地貌地图启动的日间分布变化。 我们显示,在各种任务中,包括分类、分化和地点识别中,对合成和自然数据集的零光天到夜间适应性都有所改善。