We present a unified technique for sequential estimation of convex divergences between distributions, including integral probability metrics like the kernel maximum mean discrepancy, $\varphi$-divergences like the Kullback-Leibler divergence, and optimal transport costs, such as powers of Wasserstein distances. The technical underpinnings of our approach lie in the observation that empirical convex divergences are (partially ordered) reverse submartingales with respect to the exchangeable filtration, coupled with maximal inequalities for such processes. These techniques appear to be powerful additions to the existing literature on both confidence sequences and convex divergences. We construct an offline-to-sequential device that converts a wide array of existing offline concentration inequalities into time-uniform confidence sequences that can be continuously monitored, providing valid inference at arbitrary stopping times. The resulting sequential bounds pay only an iterated logarithmic price over the corresponding fixed-time bounds, retaining the same dependence on problem parameters (like dimension or alphabet size if applicable).
翻译:我们提出了一种统一的方法,用于对分布之间的二次曲线差异进行顺序估计,包括整体概率度量,如内核最大平均差值、Kullback-Leabler差值等美元和Voicerstein距离等最佳运输成本。我们方法的技术基础在于观察到经验性二次曲线差异(部分排列)与可交换过滤值的反向子界线,以及此类过程的最大不平等。这些技术似乎是现有关于信任序列和二次曲线差异的文献的有力补充。我们建造了一个离线至序列装置,将现有的大量离线浓度不平等转化为可以持续监测的时间-统一信任序列,在任意停止时提供有效的推断。由此产生的后继界限仅支付相应固定时间界限的迭代对数价格,同时保留对问题参数(如适用时的尺寸或字母大小)的同样依赖性参数。