When there are resource constraints, it is important to rank or estimate treatment benefits according to patient characteristics. This facilitates prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as the metric for benefits. However, there can be settings where relative differences may better represent such benefits. In this paper, we consider modeling such relative differences that form scale-invariant contrasts between conditional treatment effects. We show that all scale-invariant contrasts are monotonic transformations of each other. Therefore we posit a single index model for a particular relative contrast. Identifiability of the model is enforced via an intuitive $l_2$ norm constraint on index parameters. We then derive estimating equations and efficient scores via semiparametric efficiency theory. Based on the efficient score and its variant, we propose a two-step approach that consists of minimizing a doubly robust loss function and a subsequent one-step efficiency augmentation procedure to achieve efficiency bound. Careful theoretical and numerical studies are provided to show the superiority of the proposed approach.
翻译:当存在资源限制时,必须根据病人的特点对治疗福利进行分级或估计。这有利于确定不同治疗的优先顺序。关于个人化治疗规则的现有文献大多以绝对有条件治疗的差别为目标,以绝对的有条件治疗效果为衡量福利的标准。然而,在有些情况下,相对差别可能更好地代表这种好处。在本文中,我们考虑建模这种相对差别,这种差别在条件治疗效果之间形成比例差异差异;我们表明,所有规模内差异都是单一的,因此,我们为某一特定相对差异采用一个单一的指数模型。该模型的可识别性是通过指数参数的直观值$l_2美元规范限制来实施的。我们然后通过半对称效率理论来估算方程式和有效分数。根据高效分数及其变式,我们提出一个分两步走的方法,即最大限度地减少加倍有力的损失功能,以及随后的一步骤效率增强程序,以实现效率约束。我们提供了谨慎的理论和数字研究,以显示拟议方法的优越性。