We give new bounds for the single-nomination model of impartial selection, a problem proposed by Holzman and Moulin (Econometrica, 2013). A selection mechanism, which may be randomized, selects one individual from a group of $n$ based on nominations among members of the group; a mechanism is impartial if the selection of an individual is independent of nominations cast by that individual, and $\alpha$-optimal if under any circumstance the expected number of nominations received by the selected individual is at least $\alpha$ times that received by any individual. In a many-nominations model, where individuals may cast an arbitrary number of nominations, the so-called permutation mechanism is $1/2$-optimal, and this is best possible. In the single-nomination model, where each individual casts exactly one nomination, the permutation mechanism does better and prior to this work was known to be $67/108$-optimal but no better than $2/3$-optimal. We show that it is in fact $2/3$-optimal for all $n$. This result is obtained via tight bounds on the performance of the mechanism for graphs with maximum degree $\Delta$, for any $\Delta$, which we prove using an adversarial argument. We then show that the permutation mechanism is not best possible; indeed, by combining the permutation mechanism, another mechanism called plurality with runner-up, and some new ideas, $2105/3147$-optimality can be achieved for all $n$. We finally give new upper bounds on $\alpha$ for any $\alpha$-optimal impartial mechanism. They improve on the existing upper bounds for all $n\geq 7$ and imply that no impartial mechanism can be better than $76/105$-optimal for all $n$; they do not preclude the existence of a $(3/4-\varepsilon)$-optimal impartial mechanism for arbitrary $\varepsilon>0$ if $n$ is large.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员