Online A/B testing plays a critical role in the high-tech industry to guide product development and accelerate innovation. It performs a null hypothesis statistical test to determine which variant is better. However, a typical A/B test presents two problems: (i) a fixed-horizon framework inflates the false-positive errors under continuous monitoring; (ii) the homogeneous effects assumption fails to identify a subgroup with a beneficial treatment effect. In this paper, we propose a sequential test for subgroup treatment effects based on value difference, named SUBTLE, to address these two problems simultaneously. The SUBTLE allows the experimenters to "peek" at the results during the experiment without harming the statistical guarantees. It assumes heterogeneous treatment effects and aims to test if some subgroup of the population will benefit from the investigative treatment. If the testing result indicates the existence of such a subgroup, a subgroup will be identified using a readily available estimated optimal treatment rule. We examine the empirical performance of our proposed test on both simulations and a real dataset. The results show that the SUBTLE has high detection power with controlled type I error at any time, is more robust to noise covariates, and can achieve early stopping compared with the corresponding fixed-horizon test.


翻译:在线A/B测试在高科技产业中发挥着关键作用,以指导产品开发并加速创新。它进行一个无效假设的统计测试,以确定哪个变量更好。然而,典型的A/B测试提出两个问题:(一) 固定正方圆框架,在持续监测下将错误阳性错误膨胀;(二) 同一效应假设未能确定具有有益治疗效果的分组。在本文件中,我们提议根据价值差异对分组治疗效果进行顺序测试,同时解决这两个问题。SubTLE允许实验者在试验期间对试验结果进行“比对”,而不会损害统计保证。它假定了不同的治疗效果,目的是测试某些人口分组是否受益于调查治疗。如果测试结果显示存在这样一个分组,将使用现成的估计最佳治疗规则确定一个分组。我们在模拟和真实数据集中拟议测试的经验性表现。结果显示,SubTLE在任何时间里都具有高检测力且受控型I错误的检测能力,对于噪音共变式测试来说都更可靠,能够及早停止。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
75+阅读 · 2021年9月27日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员