While a lot of work has been done in understanding representations learned within deep NLP models and what knowledge they capture, little attention has been paid towards individual neurons. We present a technique called as Linguistic Correlation Analysis to extract salient neurons in the model, with respect to any extrinsic property - with the goal of understanding how such a knowledge is preserved within neurons. We carry out a fine-grained analysis to answer the following questions: (i) can we identify subsets of neurons in the network that capture specific linguistic properties? (ii) how localized or distributed neurons are across the network? iii) how redundantly is the information preserved? iv) how fine-tuning pre-trained models towards downstream NLP tasks, impacts the learned linguistic knowledge? iv) how do architectures vary in learning different linguistic properties? Our data-driven, quantitative analysis illuminates interesting findings: (i) we found small subsets of neurons that can predict different linguistic tasks, ii) with neurons capturing basic lexical information (such as suffixation) localized in lower most layers, iii) while those learning complex concepts (such as syntactic role) predominantly in middle and higher layers, iii) that salient linguistic neurons are relocated from higher to lower layers during transfer learning, as the network preserve the higher layers for task specific information, iv) we found interesting differences across pre-trained models, with respect to how linguistic information is preserved within, and v) we found that concept exhibit similar neuron distribution across different languages in the multilingual transformer models. Our code is publicly available as part of the NeuroX toolkit.


翻译:虽然在理解深层NLP模型中学到的表达方式及其所捕捉的知识方面做了大量工作,但很少注意单个神经元。我们展示了一种名为语言关联分析的技术,以提取模型中突出的神经元,涉及任何外部属性,目的是了解如何在神经元中保存这种知识。我们进行了细微分析,以回答下列问题:(一) 我们能否在网络中找到能反映特定语言特性的神经子集? (二) 网络中如何转换或分布的语言神经元? (三) 信息保存的冗余程度如何? 四) 模型中下游NLP任务中如何微调预先训练的模型,如何影响学习的语言知识? 四) 结构在学习不同语言特性时如何不同? 我们的数据驱动和定量分析揭示了有趣的发现:(一) 我们发现了能够预测不同语言特性的少量神经元子集, (二) 神经元捕捉到基本的多语系信息(例如,在最低层中本地,三) 学习的复杂概念(例如,在中等层次中,我们发现,在深度的层次中,我们发现有不同的层次,在深度的层次中,我们发现我们发现,在深度学习的层次中,在深度的层次中,我们发现有不同的层次中,在深度任务中,在深度结构中,我们发现有甚层次,在学习的分变变。。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员