Motivated by a game of Battleship, we consider the problem of efficiently hitting a ship of an uncertain shape within a large playing board. Formally, we fix a dimension $d\in\{1,2\}$. A ship is a subset of $\mathbb{Z}^d$. Given a family $F$ of ships, we say that an infinite subset $X\subset\mathbb{Z}^d$ of the cells pierces $F$, if it intersects each translate of each ship in $F$ (by a vector in $\mathbb{Z}^d$). In this work, we study the lowest possible (asymptotic) density $\pi(F)$ of such a piercing subset. To our knowledge, this problem has previously been studied only in the special case $|F|=1$ (a single ship). As our main contribution, we present a formula for $\pi(F)$ when $F$ consists of 2 ships of size 2 each, and we identify the toughest families in several other cases. We also implement an algorithm for finding $\pi(F)$ in 1D.
翻译:在一场战舰游戏的推动下,我们考虑在大型游戏板内高效地击打一艘船体型不确定的问题。 正式地, 我们确定一个维度 $1, 2 美元。 船舶是美元 mathbb ⁇ d$的子集。 根据我们所知, 这个问题以前只在特殊案例中研究过 $1美元( 单艘船 ) 。 作为我们的主要贡献, 我们提出一个单位为$1 美元的公式, 当每艘船由2号大小的两艘船组成时, 我们提出一个单位为$2的公式, 我们在其他几个案例中也确定了最坚硬的家庭。 我们还实施了在1D中寻找$1美元( F)的算法。