Motivated by a game of Battleship, we consider the problem of efficiently hitting a ship of an uncertain shape within a large playing board. Formally, we fix a dimension $d\in\{1,2\}$. A ship is a subset of $\mathbb{Z}^d$. Given a family $F$ of ships, we say that an infinite subset $X\subset\mathbb{Z}^d$ of the cells pierces $F$, if it intersects each translate of each ship in $F$ (by a vector in $\mathbb{Z}^d$). In this work, we study the lowest possible (asymptotic) density $\pi(F)$ of such a piercing subset. To our knowledge, this problem has previously been studied only in the special case $|F|=1$ (a single ship). As our main contribution, we present a formula for $\pi(F)$ when $F$ consists of 2 ships of size 2 each, and we identify the toughest families in several other cases. We also implement an algorithm for finding $\pi(F)$ in 1D.


翻译:在一场战舰游戏的推动下,我们考虑在大型游戏板内高效地击打一艘船体型不确定的问题。 正式地, 我们确定一个维度 $1, 2 美元。 船舶是美元 mathbb ⁇ d$的子集。 根据我们所知, 这个问题以前只在特殊案例中研究过 $1美元( 单艘船 ) 。 作为我们的主要贡献, 我们提出一个单位为$1 美元的公式, 当每艘船由2号大小的两艘船组成时, 我们提出一个单位为$2的公式, 我们在其他几个案例中也确定了最坚硬的家庭。 我们还实施了在1D中寻找$1美元( F)的算法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员