We propose and analyze a new family of nonconforming finite elements for the three-dimensional quad-curl problem. The proposed finite element spaces are subspaces of $\pmb{H}(\mathrm{curl})$, but not of $\pmb{H}(\mathrm{grad}~\mathrm{curl})$, which are different from the existing nonconforming ones. The well-posedness of the discrete problem is proved and optimal error estimates in discrete $\pmb{H}(\mathrm{grad}~\mathrm{curl})$ norm, $\pmb{H}(\mathrm{curl})$ norm and $\pmb{L}^2$ norm are derived. Numerical experiments are provided to illustrate the good performance of the method and confirm our theoretical predictions.
翻译:我们建议并分析三维四曲线问题中不兼容的有限元素的新组合。 提议的有限元素空间为$\ pmb{H} (\ mathrm{ curl}) $( mathrm{ curl}) $, 但不是$\ pmb{H} (\ mathrm{grad{ mathrm{curl}) $, 与现有的不兼容元素不同。 离散问题的正确性得到证实, 最佳误差估计在离散 $\ pmb{ H} (\ mathrm{ mathrm{ curl}) 标准中是 $\ pmb{ h} (\ mathrm{ curl}) 标准, 而不是$\ pmb{ L} 标准。 提供了数值实验, 以说明方法的良好性能并证实我们的理论预测 。