Accurately forecasting ridesourcing demand is important for effective transportation planning and policy-making. With the rise of Artificial Intelligence (AI), researchers have started to utilize machine learning models to forecast travel demand, which, in many cases, can produce higher prediction accuracy than statistical models. However, most existing machine-learning studies used a global model to predict the demand and ignored the influence of spatial heterogeneity (i.e., the spatial variations in the impacts of explanatory variables). Spatial heterogeneity can drive the parameter estimations varying over space; failing to consider the spatial variations may limit the model's prediction performance. To account for spatial heterogeneity, this study proposes a Clustering-aided Ensemble Method (CEM) to forecast the zone-to-zone (census-tract-to-census-tract) travel demand for ridesourcing services. Specifically, we develop a clustering framework to split the origin-destination pairs into different clusters and ensemble the cluster-specific machine learning models for prediction. We implement and test the proposed methodology by using the ridesourcing-trip data in Chicago. The results show that, with a more transparent and flexible model structure, the CEM significantly improves the prediction accuracy than the benchmark models (i.e., global machine-learning and statistical models directly trained on all observations). This study offers transportation researchers and practitioners a new methodology of travel demand forecasting, especially for new travel modes like ridesourcing and micromobility.
翻译:由于人工智能(AI)的崛起,研究人员已开始利用机器学习模型来预测旅行需求,在许多情况下,这种模型可以产生比统计模型更高的预测准确性,然而,大多数现有的机器学习研究都使用全球模型来预测需求,忽视空间差异性的影响(即解释性变量影响的空间差异),空间差异性可以推动参数估计,空间差异;不考虑空间变化可能限制模型的预测性能。考虑到空间差异性能,本研究报告建议采用集束辅助的集合式综合方法(CEM)来预测区对区(census-trat-census-trapistr)的旅行需求,从而忽视空间差异性(即解释性变量影响的空间差异)的影响。具体地说,我们开发了一个群集框架,将来源-目的地对分为不同的集群,将集束-特定结构的机械学习模型混合在一起进行预测。我们通过使用轨迹观测模型来实施和测试模型的预测性能。在芝加哥,特别以具有透明度的统计性的数据预测方法。