The Stream API was added in Java 8 to allow the declarative expression of data-processing logic, typically map-reduce-like data transformations on collections and datasets. The Stream API introduces two key abstractions. The stream, which is a sequence of elements available in a data source, and the stream pipeline, which contains operations (e.g., map, filter, reduce) that are applied to the elements in the stream upon execution. Streams are getting popular among Java developers as they leverage the conciseness of functional programming and ease the parallelization of data processing. Despite the benefits of streams, in comparison to data processing relying on imperative code, streams can introduce significant overheads which are mainly caused by extra object allocations and reclamations, and the use of virtual method calls. As a result, developers need means to study the runtime behavior of streams in the goal of both mitigating such abstraction overheads and optimizing stream processing. Unfortunately, there is a lack of dedicated tools able to dynamically analyze streams to help developers specifically locate issues degrading application performance. In this paper, we address the profiling and optimization of streams. We present a novel profiling technique for measuring the computations performed by a stream in terms of elapsed reference cycles, which we use to locate problematic streams with a major impact on application performance. While accuracy is crucial to this end, the inserted instrumentation code causes the execution of extra cycles, which are partially included in the profiles. To mitigate this issue, we estimate and compensate for the extra cycles caused by the inserted instrumentation code. We implement our approach in StreamProf that, to the best of our knowledge, is the first dedicated stream profiler for the Java Virtual Machine (JVM). With StreamProf, we find that cycle profiling is effective to detect problematic streams whose optimization can enable significant performance gains. We also find that the accurate profiling of tasks supporting parallel stream processing allows the diagnosis of load imbalance according to the distribution of stream-related cycles at a thread level. We conduct an evaluation on sequential and parallel stream-based workloads that are publicly available in three different sources. The evaluation shows that our profiling technique is efficient and yields accurate profiles. Moreover, we show the actionability of our profiles by guiding stream-related optimizations on two workloads from Renaissance. Our optimizations require the modification of only a few lines of code while achieving speedups up to a factor of 5x. Java streams have been extensively studied by recent work, focusing on both how developers are using streams and how to optimize them. Current approaches in the optimization of streams mainly rely on static analysis techniques that overlook runtime information, suffer from important limitations to detect all streams executed by a Java application, or are not suitable for the analysis of parallel streams. Understanding the dynamic behavior of both sequential and parallel stream processing and its impact on application performance is crucial to help users make better decisions while using streams.


翻译:Stream API 在 爪哇 8 中添加了 Stream API, 以便通过声明表达数据处理逻辑的周期性表达。 Stream API 引入了两个关键抽象。 流是数据源中可用元素的序列, 流管道则包含执行时适用于流中元素的运行( 例如, 地图, 过滤器, 减少 ) 。 流流在爪哇 8 中越来越受欢迎, 因为它们利用了功能性编程的简洁性, 方便了数据处理的平行性。 尽管流与数据处理的代码相比, 流的进度变异性能有益处, 流流可以带来好处。 流流流可以带来好处, 流和流中的数据流可以带来好处, 流流流中流中流的描述和精度可以带来好处。 我们用一个新颖的直流数据周期来测量工具的运行情况, 工具的运行过程可以让工具的运行过程发生快速性变现, 工具的运行过程可以用来测量我们的运行过程。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员