In this paper, we propose a new framework, exploiting the multi-agent deep deterministic policy gradient (MADDPG) algorithm, to enable a base station (BS) and user equipment (UE) to come up with a medium access control (MAC) protocol in a multiple access scenario. In this framework, the BS and UEs are reinforcement learning (RL) agents that need to learn to cooperate in order to deliver data. The network nodes can exchange control messages to collaborate and deliver data across the network, but without any prior agreement on the meaning of the control messages. In such a framework, the agents have to learn not only the channel access policy, but also the signaling policy. The collaboration between agents is shown to be important, by comparing the proposed algorithm to ablated versions where either the communication between agents or the central critic is removed. The comparison with a contention-free baseline shows that our framework achieves a superior performance in terms of goodput and can effectively be used to learn a new protocol.


翻译:在本文中,我们提出了一个新的框架,利用多试剂的深度确定政策梯度(MADDPG)算法,使基地站和用户设备(UE)能够在多重访问情况下提出中型出入控制(MAC)协议。在这个框架内,BS和UE是需要学习合作才能提供数据的强化学习(RL)代理。网络节点可以交换控制信息,以便在整个网络中合作和提供数据,但无需事先就控制信息的含义达成任何协议。在这样一个框架内,代理人不仅要学习频道访问政策,还要学习信号政策。通过将拟议的算法与取消代理商或中央评论家之间的通信的布局化版本进行比较,表明代理人之间的合作很重要。与无争议基线的比较表明,我们的框架在良好作用方面表现优异,可以有效地用于学习新的协议。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
What Should Future Wireless Network Architectures Be?
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月11日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员