It has been known that the insufficiency of linear coding in achieving the optimal rate of the general index coding problem is rooted in its rate's dependency on the field size. However, this dependency has been described only through the two well-known matroid instances, namely the Fano and non-Fano matroids, which, in turn, limits its scope only to the fields with characteristic two. In this paper, we extend this scope to demonstrate the reliance of linear coding rate on fields with characteristic three. By constructing two index coding instances of size 29, we prove that for the first instance, linear coding is optimal only over the fields with characteristic three, and for the second instance, linear coding over any field with characteristic three can never be optimal. Then, a variation of the second instance is designed as the third index coding instance of size 58, for which, it is proved that while linear coding over any fields with characteristic three cannot be optimal, there exists a nonlinear code over the fields with characteristic three, which achieves its optimal rate. Connecting the first and third index coding instances in two specific ways, called no-way and two-way connections, will lead to two new index coding instances of size 87 and 91 for which linear coding is outperformed by nonlinear codes. Another main contribution of this paper is to reduce the key constraints on the space of the linear coding for the the first and second index coding instances, each of size 29, into a matroid instance with the ground set of size 9, whose linear representability is dependent on the fields with characteristic three. The proofs and discussions provided in this paper through using these two relatively small matroid instances will shed light on the underlying reason causing the linear coding to become insufficient for the general index coding problem.


翻译:众所周知, 线性编码在达到通用指数编码问题的最佳比率方面不够充分, 其根源在于其速度对实地大小的依赖性。 然而, 这种依赖性仅通过两个众所周知的类固醇实例来描述, 即法诺和非法诺类的类固醇, 这反过来又将其范围限制在具有特征二的字段。 在本文中, 我们扩大这个范围以显示线性编码率对具有特征三的字段的依赖性。 通过构建两个指数编码大小为 29, 我们证明, 首先线性编码只对具有特征三的字段最理想, 而第二, 线性编码仅对具有特征三的字段最理想性, 而对于具有特征三的字段来说, 线性编码的线性编码线性编码不可能是最佳的。 第二, 将一级和第三级的索引编码最优化, 以两种具体的方式将线性编码连接到具有特性的字段, 要求正统性代码的直径直线性编码的编码将显示为二号 。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员