Mortality forecasting plays a pivotal role in insurance and financial risk management of life insurers, pension funds, and social securities. Mortality data is usually high-dimensional in nature and favors factor model approaches to modelling and forecasting. This paper introduces a new forecast-driven hierarchical factor model (FHFM) customized for mortality forecasting. Compared to existing models, which only capture the cross-sectional variation or time-serial dependence in the dimension reduction step, the new model captures both features efficiently under a hierarchical structure, and provides insights into the understanding of dynamic variation of mortality patterns over time. By comparing with static PCA utilized in Lee and Carter 1992, dynamic PCA introduced in Lam et al. 2011, as well as other existing mortality modelling methods, we find that this approach provides both better estimation results and superior out-of-sample forecasting performance. Simulation studies further illustrate the advantages of the proposed model based on different data structures. Finally, empirical studies using the US mortality data demonstrate the implications and significance of this new model in life expectancy forecasting and life annuities pricing.
翻译:死亡率预测在生命保险人、养老基金和社会证券的保险和财务风险管理中发挥着关键作用。死亡率数据通常是高层面的,有利于建模和预测的因子模型。本文件介绍了一个新的预测驱动的等级因子模型(FHFM),专门用于死亡率预测。与现有模型相比,新模型仅反映在减少规模步骤中的跨部门变化或时间序列依赖,在等级结构下有效捕捉了两者的特征,并提供了对长期死亡率模式动态变化的理解。通过与Lee和Carter1992年使用的静态五氯苯甲醚、Lam等人2011年采用的动态五氯苯甲醚以及其他现有的死亡率建模方法进行比较,我们发现这一方法不仅提供了更好的估计结果,而且提供了较高的抽样预测绩效。模拟研究进一步说明了基于不同数据结构的拟议模型的优势。最后,使用美国死亡率数据进行的经验研究表明了这一新模型对预期寿命预测和生命年金价的影响和重要性。