A data-centric approach with Natural Language Processing (NLP) to predict personality types based on the MBTI (an introspective self-assessment questionnaire that indicates different psychological preferences about how people perceive the world and make decisions) through systematic enrichment of text representation, based on the domain of the area, under the generation of features based on three types of analysis: sentimental, grammatical and aspects. The experimentation had a robust baseline of stacked models, with premature optimization of hyperparameters through grid search, with gradual feedback, for each of the four classifiers (dichotomies) of MBTI. The results showed that attention to the data iteration loop focused on quality, explanatory power and representativeness for the abstraction of more relevant/important resources for the studied phenomenon made it possible to improve the evaluation metrics results more quickly and less costly than complex models such as the LSTM or state of the art ones as BERT, as well as the importance of these results by comparisons made from various perspectives. In addition, the study demonstrated a broad spectrum for the evolution and deepening of the task and possible approaches for a greater extension of the abstraction of personality types.


翻译:与自然语言处理公司(NLP)合作,以数据为中心的方法,预测基于MBTI的个性类型(自评问卷,显示人们如何看待世界和作出决定的不同心理偏好),根据地区领域,根据三种分析类型(情感、语法和方面)生成的特征,系统地丰富文本代表,根据以下三种分析类型(情感、语法和方面),对MBTI的4个分类者(直径)进行预测,通过网格搜索和逐步反馈,对超光谱仪进行过早优化。结果显示,通过关注数据循环,注重质量、解释力和代表性,为所研究的现象抽取更相关/重要的资源,使得能够更快、更便宜地改进评价指标结果,而不是复杂模型,如LSTM或作为BERT的艺术状态,以及从各种角度进行比较,这些结果的重要性。此外,研究还表明,任务演化和深化的广泛范围,以及扩大抽象人格种类的可能方法。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年7月15日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员