We present a new corpus of Twitter data annotated for codeswitching and borrowing between Spanish and English. The corpus contains 9,500 tweets annotated at the token level with codeswitches, borrowings, and named entities. This corpus differs from prior corpora of codeswitching in that we attempt to clearly define and annotate the boundary between codeswitching and borrowing and do not treat common "internet-speak" ('lol', etc.) as codeswitching when used in an otherwise monolingual context. The result is a corpus that enables the study and modeling of Spanish-English borrowing and codeswitching on Twitter in one dataset. We present baseline scores for modeling the labels of this corpus using Transformer-based language models. The annotation itself is released with a CC BY 4.0 license, while the text it applies to is distributed in compliance with the Twitter terms of service.
翻译:我们为西班牙文和英文之间编码和借款提供了一套新的Twitter数据,说明西班牙文和英文之间的编码和借款情况;该文载有9 500份推特,说明有编码开关、借款和名称实体在象征性层面的推文;该文与先前的编码开关公司不同,因为我们试图明确界定和说明编码开关和借款之间的界限,不把通用的“网际话”(“lol”等)当作编码开关,在使用其他单一语言的情况下使用该词。其结果是,该文可以研究和制作一个数据集,在推特上进行西班牙文-英文借款和编码开关的模型。我们用变换语言模式为该文的标签建模提供了基线评分。该注本身以CC by 4.0的许可证发布,而其适用的文本按照Twitter服务条款分发。