Under-bagging (UB), which combines under-sampling and bagging, is a popular ensemble learning method for training classifiers on an imbalanced data. Using bagging to reduce the increased variance caused by the reduction in sample size due to under-sampling is a natural approach. However, it has recently been pointed out that in generalized linear models, naive bagging, which does not consider the class imbalance structure, and ridge regularization can produce the same results. Therefore, it is not obvious whether it is better to use UB, which requires an increased computational cost proportional to the number of under-sampled data sets, when training linear models. Given such a situation, in this study, we heuristically derive a sharp asymptotics of UB and use it to compare with several other popular methods for learning from imbalanced data, in the scenario where a linear classifier is trained from a two-component mixture data. The methods compared include the under-sampling (US) method, which trains a model using a single realization of the under-sampled data, and the simple weighting (SW) method, which trains a model with a weighted loss on the entire data. It is shown that the performance of UB is improved by increasing the size of the majority class while keeping the size of the minority fixed, even though the class imbalance can be large, especially when the size of the minority class is small. This is in contrast to US, whose performance is almost independent of the majority class size. In this sense, bagging and simple regularization differ as methods to reduce the variance increased by under-sampling. On the other hand, the performance of SW with the optimal weighting coefficients is almost equal to UB, indicating that the combination of reweighting and regularization may be similar to UB.


翻译:暂无翻译

0
下载
关闭预览

相关内容

纽约州立大学布法罗分校(University at Buffalo–SUNY)成立于 1846 年,学校于 1962 年并入纽约州立大学(SUNY)系统。作为纽约州立大学系统中的旗舰机构,纽约州立大学布法罗分校是 SUNY 系统 64 个校区的中规模最大、综合性最强的校区。同时,学校是美国大学协会的成员。纽约州立大学布法罗分校是一所致力于学术卓越的一流研究密集型公立大学。学校以坚韧乐观的文化、足智多谋的思维和务实的梦想为特色,吸引了州内和来自全球是学生。其计算机专业在 CSRankings 排名 43,USnews 排名 61,学生将受益于计算机系全面多样的研究方向: https://engineering.buffalo.edu/computer-science-engineering/research/research-areas.html
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
149+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
32+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
17+阅读 · 2021年2月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
149+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
32+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
17+阅读 · 2021年2月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
17+阅读 · 2018年4月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员