Unsupervised graph-level representation learning plays a crucial role in a variety of tasks such as molecular property prediction and community analysis, especially when data annotation is expensive. Currently, most of the best-performing graph embedding methods are based on Infomax principle. The performance of these methods highly depends on the selection of negative samples and hurt the performance, if the samples were not carefully selected. Inter-graph similarity-based methods also suffer if the selected set of graphs for similarity matching is low in quality. To address this, we focus only on utilizing the current input graph for embedding learning. We are motivated by an observation from real-world graph generation processes where the graphs are formed based on one or more global factors which are common to all elements of the graph (e.g., topic of a discussion thread, solubility level of a molecule). We hypothesize extracting these common factors could be highly beneficial. Hence, this work proposes a new principle for unsupervised graph representation learning: Graph-wise Common latent Factor EXtraction (GCFX). We further propose a deep model for GCFX, deepGCFX, based on the idea of reversing the above-mentioned graph generation process which could explicitly extract common latent factors from an input graph and achieve improved results on downstream tasks to the current state-of-the-art. Through extensive experiments and analysis, we demonstrate that, while extracting common latent factors is beneficial for graph-level tasks to alleviate distractions caused by local variations of individual nodes or local neighbourhoods, it also benefits node-level tasks by enabling long-range node dependencies, especially for disassortative graphs.


翻译:在诸如分子属性预测和社区分析等各种任务中,特别是在数据注释费用昂贵的情况下,不受监督的图形代表性学习在分子属性预测和社区分析等不同任务中发挥着关键作用。目前,大多数最优秀的图形嵌入方法都是基于Infomax原则的。这些方法的性能高度取决于对负面样本的选择,损害性能,如果没有仔细选择样本的话,这些方法的性能高度取决于对负面样本的选择,损害性能。如果为相似性匹配所选的一组图表质量低,则基于相似性的方法也会受到影响。为了解决这个问题,我们只注重利用当前输入图的图表来进行嵌入学习。我们进一步从真实的图形生成流程中观测到真实的图形生成变异性。 深度的图形根据一种或更多全球因素来形成,例如讨论线索的话题、分子的溶解度等,我们通过直观的生成模型来明确展示当前生成结果,然后通过直观的图像来改变当前生成结果。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员