Analysis of signals with oscillatory modes with crossover instantaneous frequencies is a challenging problem in time series analysis. One way to handle this problem is lifting the 2-dimensional time-frequency representation to a 3-dimensional representation, called time-frequency-chirp rate (TFC) representation, by adding one extra chirp rate parameter so that crossover frequencies are disentangled in higher dimension. The chirplet transform is an algorithm for this lifting idea, which leads to a TFC representation. However, in practice, we found that it has a strong ``blurring'' effect in the chirp rate axis, which limits its application in real-world data. Moreover, to our knowledge, we have limited mathematical understanding of the chirplet transform in the literature. Motivated by the need for the real-world data analysis, in this paper, we propose the synchrosqueezed chirplet transform (SCT) that enhances the TFC representation given by the chirplet transform. The resulting concentrated TFC representation has high contrast so that one can better distinguish different modes with crossover instantaneous frequencies. The basic idea is to use the phase information in the chirplet transform to determine a reassignment rule that sharpens the TFC representation determined by the chirplet transform. We also analyze the chirplet transform and provide theoretical guarantees of SCT.


翻译:使用横跨瞬时频率的星流模式分析信号,这是时间序列分析中一个具有挑战性的问题。解决问题的方法之一是将二维时间频率代表器提升为三维代表器,称为时频-峰速率(TFC)代表器,方法是增加一个额外的正调率参数,使跨频率在更高维度中解开。辣椒的变换是这一升动想法的算法,它导致一个TFC代表器。然而,在实践中,我们发现它具有很强的“放大”效应,在正调率轴中限制了它的应用。此外,根据我们的知识,我们对文献中辣椒的变异(TFC)代表器的数学理解有限。由于需要真实世界数据分析,我们在此文件中提出同步阵列的辣椒变变(SCT)转换(SCT)的算法,从而提升了TFC代表器的代表权。 由此形成的集中的TFC代表器的对比度很高,因此可以更好地区分不同模式与超转瞬频率。此外,我们的基本想法是利用不断更新的阶段变换的CFCA规则。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月5日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Top
微信扫码咨询专知VIP会员