Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201, and that our predictor can consistently learn to extract useful features from the DARTS search space, improving upon the second-order baseline. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.


翻译:神经结构搜索(NAS)使研究人员能够自动探索广泛的设计空间,以提高神经网络的效率。这一效率在设备部署方面特别重要,因为精度的提高应当与模型的计算要求相平衡。在实践中,模型的性能衡量标准计算成本很高。以往的工作使用一种代理(例如操作数量)或神经网络层的层级测量来估计端到端硬件的性能,但不准确的预测会降低NAS的质量。为了解决这个问题,我们提议BRP-NAS,这是高效的硬件系统系统,它是一个基于图形相联网络(GCN)的精确性能预测器。此外,我们调查不同计量的预测质量,并表明通过考虑模型的二进制关系和反复的数据选择战略,可以提高以神经网络为基础的神经网络的样本效率。我们提出的方法比NAS-Bench-101和NAS-Bench-201的所有先前方法都差。我们提出的BRP-NAS-NAS,一个高效的硬件系统系统系统,一个高效的硬件系统预测器,可以持续地从图形搜索范围中提取有用的功能,最终的S-Basnial-sireal laistial laistial lax lax lax lax

1
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员