Adversary and invisibility are two fundamental but conflict characters of adversarial perturbations. Previous adversarial attacks on 3D point cloud recognition have often been criticized for their noticeable point outliers, since they just involve an "implicit constrain" like global distance loss in the time-consuming optimization to limit the generated noise. While point cloud is a highly structured data format, it is hard to constrain its perturbation with a simple loss or metric properly. In this paper, we propose a novel Point-Cloud Sensitivity Map to boost both the efficiency and imperceptibility of point perturbations. This map reveals the vulnerability of point cloud recognition models when encountering shape-invariant adversarial noises. These noises are designed along the shape surface with an "explicit constrain" instead of extra distance loss. Specifically, we first apply a reversible coordinate transformation on each point of the point cloud input, to reduce one degree of point freedom and limit its movement on the tangent plane. Then we calculate the best attacking direction with the gradients of the transformed point cloud obtained on the white-box model. Finally we assign each point with a non-negative score to construct the sensitivity map, which benefits both white-box adversarial invisibility and black-box query-efficiency extended in our work. Extensive evaluations prove that our method can achieve the superior performance on various point cloud recognition models, with its satisfying adversarial imperceptibility and strong resistance to different point cloud defense settings. Our code is available at: https://github.com/shikiw/SI-Adv.
翻译:反向和不可见性是对抗性扰动的两个根本性但冲突性特征。 先前对 3D 点云度识别的对抗性攻击经常因其明显点出点而遭到批评, 因为它们只是涉及“ 隐性限制 ” 的“ 隐性限制 ”, 就像在耗时优化中全球距离损失, 以限制产生的噪音。 虽然点云是一种高度结构化的数据格式, 但很难以简单的丢失或测量来限制其扰动性。 在本文中, 我们提出一个新的点- 点- 点- 点- 感知性映射地图, 以提高点- 扰动的效率和不易感性。 该地图显示点在遇到形状- 异性对抗性对抗性噪音时点识别云度模型的脆弱性。 这些噪音只是在形状表面设计“ 隐性限制 ”, 以限制产生的噪音。 具体地说, 我们首先在点云度输入的每个点上应用可逆性协调性转换, 降低点的自由度, 限制其在色平面上的移动性平面。 然后用白箱模型上获得的变点/ 梯度计算出最佳攻击性方向 。 最后, 我们把每个点- 的精确度分配到一个可理解性评估,,, 我们的平面-, 我们的平面性平面性平面性平面性评估,, 我们的平面,,, 我们的平面,,,,,,,, 度 度 度 度,,, 度,, 度,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 我们,,,,,,,,,,,,,,,,,,,,,,,,,,,