In this work, we present a simplification and a corresponding hardware architecture for hard-decision recursive projection-aggregation (RPA) decoding of Reed-Muller (RM) codes. In particular, we transform the recursive structure of RPA decoding into a simpler and iterative structure with minimal error-correction degradation. Our simulation results for RM(7,3) show that the proposed simplification has a small error-correcting performance degradation (0.005 in terms of channel crossover probability) while reducing the average number of computations by up to 40%. In addition, we describe the first fully parallel hardware architecture for simplified RPA decoding. We present FPGA implementation results for an RM(6,3) code on a Xilinx Virtex-7 FPGA showing that our proposed architecture achieves a throughput of 171 Mbps at a frequency of 80 MHz.


翻译:在这项工作中,我们提出了一个简化和相应的硬件结构,用于硬决定递归性投影集成(RPA)解码Reed-Muller(RM)代码,特别是,我们将RPA解码的递归结构转换成一个简单和迭代的结构,尽量减少错误校正退化。我们对RM(7 3)的模拟结果表明,拟议的简化有轻微的错误校正性能退化(在频道交叉概率方面为0.005),同时将平均计算数减少40%。此外,我们描述了简化RPA解码的第一个完全平行的硬件结构。我们提出了Xilinx Virtex-7 FPGA的RM(6 3)代码的FPGA实施结果,显示我们拟议的结构在80兆赫的频率下达到171 Mbps的吞吐量。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月18日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Multidimensional Scaling for Big Data
Arxiv
0+阅读 · 2021年1月14日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年5月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员