In this article, we study the optimal design of High Occupancy Toll (HOT) lanes. In our setup, the traffic authority determines the road capacity allocation between HOT lanes and ordinary lanes, as well as the toll price charged for travelers who use the HOT lanes but do not meet the high-occupancy eligibility criteria. We build a game-theoretic model to analyze the decisions made by travelers with heterogeneous values of time and carpool disutilities, who choose between paying or forming carpools to take the HOT lanes, or taking the ordinary lanes. Travelers' payoffs depend on the congestion cost of the lane that they take, the payment and the carpool disutilities. We provide a complete characterization of travelers' equilibrium strategies and resulting travel times for any capacity allocation and toll price. We also calibrate our model on the California Interstate highway 880 and compute the optimal capacity allocation and toll design.
翻译:在本文中,我们研究了高占用收费(HOT)车道的最优设计。在我们的设置中,交通管理机构确定普通车道和HOT车道之间的道路容量分配,以及向使用HOT车道但不符合高人数资格标准的旅行者收取的收费价格。我们建立了一个博弈论模型,以分析具有时间和拼车不适定值的异质旅行者所做的决策,他们在支付或组成拼车来使用HOT车道,或沿普通车道行驶之间进行选择。旅行者的收益取决于他们选择的车道的拥堵成本、付款和拼车不适定量。我们提供了旅行者均衡策略和任何容量分配和收费价格得出的旅行时间的完整特性描述。我们还根据加州州际公路880进行了模型校准,并计算出了最优的容量分配和收费设计。