Model-free deep reinforcement learning has achieved great success in many domains, such as video games, recommendation systems and robotic control tasks. In continuous control tasks, widely used policies with Gaussian distributions results in ineffective exploration of environments and limited performance of algorithms in many cases. In this paper, we propose a density-free off-policy algorithm, Generative Actor-Critic(GAC), using the push-forward model to increase the expressiveness of policies, which also includes an entropy-like technique, MMD-entropy regularizer, to balance the exploration and exploitation. Additionnally, we devise an adaptive mechanism to automatically scale this regularizer, which further improves the stability and robustness of GAC. The experiment results show that push-forward policies possess desirable features, such as multi-modality, which can improve the efficiency of exploration and asymptotic performance of algorithms obviously.


翻译:在许多领域,如电子游戏、建议系统和机器人控制任务等,没有模型的深层强化学习取得了巨大成功。在连续的控制任务中,使用高斯分布法的广泛政策导致许多情况下对环境的探索无效,算法的绩效有限。在本文中,我们提议采用无密度的非政策演算法,即 " 创造行动者-批评(GAC) ",使用推向模式来提高政策的表达性,这还包括一种类似微粒的技术,即MMMD-杂质定律器,以平衡勘探和开发。此外,我们设计了一种适应性机制,以自动扩大这种定律,从而进一步提高GAC的稳定性和稳健性。实验结果表明,推向政策具有可取的特征,如多种模式,它们可以明显地提高探索效率和算法的无干扰性性。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Mix and Mask Actor-Critic Methods
Arxiv
0+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员