Traffic scenario categorisation is an essential component of automated driving, for e.\,g., in motion planning algorithms and their validation. Finding new relevant scenarios without handcrafted steps reduce the required resources for the development of autonomous driving dramatically. In this work, a method is proposed to address this challenge by introducing a clustering technique based on a novel data-adaptive similarity measure, called Random Forest Activation Pattern (RFAP) similarity. The RFAP similarity is generated using a tree encoding scheme in a Random Forest algorithm. The clustering method proposed in this work takes into account that there are labelled scenarios available and the information from the labelled scenarios can help to guide the clustering of unlabelled scenarios. It consists of three steps. First, a self-supervised Convolutional Neural Network~(CNN) is trained on all available traffic scenarios using a defined self-supervised objective. Second, the CNN is fine-tuned for classification of the labelled scenarios. Third, using the labelled and unlabelled scenarios an iterative optimisation procedure is performed for clustering. In the third step at each epoch of the iterative optimisation, the CNN is used as a feature generator for an unsupervised Random Forest. The trained forest, in turn, provides the RFAP similarity to adapt iteratively the feature generation process implemented by the CNN. Extensive experiments and ablation studies have been done on the highD dataset. The proposed method shows superior performance compared to baseline clustering techniques.


翻译:交通量的分类假设情景是自动驾驶的一个必不可少的组成部分,例如,在运动规划算法及其验证中,例如,在运动规划算法及其验证中,对交通量的分类是自动驾驶的一个必不可少的组成部分。在寻找新的相关假设情景时,不用手工制作的步骤将开发自主驱动所需的资源大大减少。在这项工作中,建议采用一种方法来应对这一挑战,采用基于新颖的数据适应相似度测量的集群技术,称为随机森林活化模式(RFAP)相似性。RFAP的相似性是使用随机森林算法中的树码编码方案生成的。在这项工作中提出的组合方法中,考虑到存在贴有标签的假设情景,而标签假设情景中的信息有助于引导未贴标签情景的情景的组合。它由三个步骤组成。首先,一个自我监督的革命性神经神经网络~(CNN)使用一个定义的自我监督目标,对所有可用的交通流量情景进行了培训。第二,CNNCM对标签情景进行了精细的分类。第三,使用贴标签和未贴标签的假设情景,一个迭代优化优化优化优化选择程序用于集群。在迭接式的高级甚高频基的周期周期的周期里,将一个经过测试的森林生成方法用于进行。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2020年10月22日
Learning to Importance Sample in Primary Sample Space
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员