In this note we give a polynomial time algorithm for solving the closest vector problem in the class of zonotopal lattices. The Voronoi cell of a zonotopal lattice is a zonotope, i.e. a projection of a regular cube. Examples of zonotopal lattices include lattices of Voronoi's first kind and tensor products of root lattices of type A. The combinatorial structure of zonotopal lattices can be described by regular matroids/totally unimodular matrices. We observe that a linear algebra version of the minimum mean cycle canceling method can be applied for efficiently solving the closest vector problem in a zonotopal lattice if the lattice is given as the integral kernel of a totally unimodular matrix.
翻译:在本说明中,我们给出了一种多元时间算法,以解决Zonotopatal latices 类中最接近的矢量问题。 zonotopatal lattice 的Voronoi 单元格是一个zonotonoope, 即一个普通立方体的投影。 zonotopotal lattices的例子包括Voronoi 的首类的 ⁇ 和A类根尖尖的 ⁇ 产物的 ⁇ 。 zonotopattics 的组合结构可以用普通的类固醇/ 完全不单模矩阵来描述。 我们观察到, 最小平均周期取消法的线性代数可以应用, 有效解决一个zonotopol lttice 中最接近的矢量问题, 如果将斜方作为完全不单模矩阵的内核。