The method of random projection (RP) is the standard technique in machine learning and many other areas, for dimensionality reduction, approximate near neighbor search, compressed sensing, etc. Basically, RP provides a simple and effective scheme for approximating pairwise inner products and Euclidean distances in massive data. Closely related to RP, the method of random Fourier features (RFF) has also become popular, for approximating the Gaussian kernel. RFF applies a specific nonlinear transformation on the projected data from random projections. In practice, using the (nonlinear) Gaussian kernel often leads to better performance than the linear kernel (inner product), partly due to the tuning parameter $(\gamma)$ introduced in the Gaussian kernel. Recently, there has been a surge of interest in studying properties of RFF. After random projections, quantization is an important step for efficient data storage, computation, and transmission. Quantization for RP has also been extensive studied in the literature. In this paper, we focus on developing quantization algorithms for RFF. The task is in a sense challenging due to the tuning parameter $\gamma$ in the Gaussian kernel. For example, the quantizer and the quantized data might be tied to each specific tuning parameter $\gamma$. Our contribution begins with an interesting discovery, that the marginal distribution of RFF is actually free of the Gaussian kernel parameter $\gamma$. This small finding significantly simplifies the design of the Lloyd-Max (LM) quantization scheme for RFF in that there would be only one LM quantizer for RFF (regardless of $\gamma$). We also develop a variant named LM$^2$-RFF quantizer, which in certain cases is more accurate. Experiments confirm that the proposed quantization schemes perform well.


翻译:随机投影法( RP) 是机器学习和许多其他领域的标准技术, 用于降低维度, 近邻搜索, 压缩感测等。 基本上, RP 提供了一种简单而有效的方案, 用于近似双向内部产品和大数据中的 Euclidean 距离。 与 RP 密切相关, 随机 Fourier 特性的方法( RF) 也变得很受欢迎, 用于接近高斯内核。 RFF 的配置是随机预测后, 将随机预测数据进行特定的非线性转换。 在实践中, 使用( 非线性) 高斯内核内核内核, 通常会比线性内核( 内核产品) 产生更好的效果。 部分由于在高斯内核内核调参数 $( gammam), RFF 的调法内核内核磁内核磁M 。 在文献中, 数字内, 数字内核磁内, 数字内核磁内, 数字内, 数字内核磁内, 将发展一个数字内, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月19日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员