We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\varepsilon$ (and $\mu$ if it applies), up to log factors. Previous results with these accelerated rates only worked, given strong g-convexity, in a generally small neighborhood (initial distance $R$ to a minimizer being $R = O((\mu/L)^{3/4})$). Our rates have a polynomial factor on $1/\cos(R)$ (spherical case) or $\cosh(R)$ (hyperbolic case). Thus, we completely match the Euclidean case for a constant initial distance, and for larger $R$ we incur greater constants due to the geometry. As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \textit{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa.


翻译:我们进一步研究里格曼多元的加速优化现象,方法是采用加速全球一阶方法,优化超球空间或球区子集中定义的美元和地平线(g-convex)或$\muauty g-convex功能。对于欧格里多尼亚空间以外的多个区域,这是第一个达到 empph{global} 速度与欧格里多尼亚空间加速梯度下降率相同,在美元和瓦里普斯朗(如果适用的话,则美元)方面采用加速的全球一阶方法,在日志因素上优化美元和地平方平线(g- convex)或美元(yperecepslon),然后在一般小的街区中,这些加速率效果只能起作用(最短的距离为$至最低的R=O(( mu/L) 3/4}}美元),这是第一个方法。我们的汇率在1美元/colfrecial(R)或美元(ropercol)之间,对于我们最初的平比方平方平方格(rox),一个持续的递法则完全符合Ecolx的递的递减法。因此一个持续的递解-rox,对于我们的货币-rocol-rocol-rox的递减法则提供了一个持续的周期-rol-rocol-rol-ro-ro-ro-rocol-rocol-rox),对于我们比。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员